Vector Formalism in Introductory Physics VI: A Unified Solution for Simple Dot Product and Cross Product Equations

TL;DR: Simple vector dot products and cross products may be “undone” using formal methods consistent with Gibbsian vector algebra. Writing the cross product and dot product of an unknown vector relative to a given vector in a canonical form allows a well known vector identity to be used to isolate the unknown vector. Special cases […]

Read More Vector Formalism in Introductory Physics VI: A Unified Solution for Simple Dot Product and Cross Product Equations

Vector Formalism in Introductory Physics V: Two Equations, One Solution

TL;DR: Solving seemingly trivial dot product and cross product equations leads to an astonishing result, namely that they have the same solution, which can be derived both geometrically and algebraically. Establishing this common solution is an important step in motivating formal Gibbsian vector algebra. In the previous two posts, I demonstrated that the simple dot […]

Read More Vector Formalism in Introductory Physics V: Two Equations, One Solution

Almanacs in Astronomy Classes

In memory of my maternal grandmother Dorothy Marie Blalock Clark (1912-1997) TL;DR: Ubiquitous farmers’ almanacs are an inexpensive printed source of accurate astronomical information despite being mostly advertising vehicles. This information can be used in the classroom to generate questions and learning about not only astronomy, but also history, mathematics, and computation.  Thanks to my […]

Read More Almanacs in Astronomy Classes

Vector Formalism in Introductory Physics IV: Unwrapping Cross Products Geometrically

TL;DR: Vector cross products are not like products of real numbers, for which there is an inverse operation to “undo” multiplication. I don’t think we should introduce cross products as a form of “multiplication” in introductory physics courses because it may reinforce the urge to “divide by a vector.” A better approach may be to […]

Read More Vector Formalism in Introductory Physics IV: Unwrapping Cross Products Geometrically

Vector Formalism in Introductory Physics III: Unwrapping Dot Products Geometrically

TL;DR: Vector dot products are not like products of real numbers, for which there is an inverse operation to “undo” multiplication. I don’t think we should introduce dot products as a form of “multiplication” in introductory physics courses because it may reinforce the urge to “divide by a vector.” A better approach may be to […]

Read More Vector Formalism in Introductory Physics III: Unwrapping Dot Products Geometrically

Vector Formalism in Introductory Physics II: Six Coordinate-Free Derivations of the BAC-CAB Identity

TL;DR: The BAC-CAB vector identity is probably the most important vector identity, and has potentially important applications in introductory physics. I present six coordinate-free derivations of this identity. By “coordinate-free” I mean a derivation that doesn’t rely on any particular coordinate system, and one that relies on the inherent geometric relationships among the vectors involved. […]

Read More Vector Formalism in Introductory Physics II: Six Coordinate-Free Derivations of the BAC-CAB Identity

Vector Formalism in Introductory Physics I: Taking the Magnitude of Both Sides

TL;DR: I don’t like the way vectors are presented in calculus-based and algebra-based introductory physics. I think a more formal approach is warranted. This post addresses the problem of taking the magnitude of both sides of simple vector equations. If you want the details, read on. This is the first post in a new series […]

Read More Vector Formalism in Introductory Physics I: Taking the Magnitude of Both Sides

Matter & Interactions II, Week 12

We’re hanging out in chapter 19 looking at the properties of capacitors in circuits. In response to my (chemist) department chair’s accusation that I’m not rigorous enough in my teaching of “the scientific method” as it’s practiced in chemistry, I just had “the talk” about “THE” scientific method with the class and about how it […]

Read More Matter & Interactions II, Week 12

Matter & Interactions II, Week 11

More with circuits, and this time capacitors, and the brilliantly simple description M&I provides for their behavior. In chapter 19, we see that traditional textbooks have misled students in a very serious way regarding the behavior of capacitors. Those “other” textbooks neglect fringe fields. Ultimately, and unfortunately, this means that capacitors should not work at […]

Read More Matter & Interactions II, Week 11