Vector Formalism in Introductory Physics IV: Unwrapping Cross Products Geometrically

TL;DR: Vector cross products are not like products of real numbers, for which there is an inverse operation to “undo” multiplication. I don’t think we should introduce cross products as a form of “multiplication” in introductory physics courses because it may reinforce the urge to “divide by a vector.” A better approach may be to […]

Read More Vector Formalism in Introductory Physics IV: Unwrapping Cross Products Geometrically

Proving the Absence of Length Contraction Perpendicular to Velocity

When teaching conceptual physics, students almost always ask why length contraction only occurs parallel to velocity and not perpendicular to it. That’s a meaty conceptual question and one that always leaves me looking for a convincing, non mathematical explanation. Earlier this semester, I finally found what I think is the best one I’ve ever heard […]

Read More Proving the Absence of Length Contraction Perpendicular to Velocity

Musical Thoughts On Teaching Physics

TL;DR There are many lessons physics teachers can learn from music teachers about teaching one’s discipline. Many, and perhaps most (all?), concepts in music have analogs in physics and mathematics. I have a background in music, spefically percussion. Marching band was my life in high school and that carried over into my college years. I […]

Read More Musical Thoughts On Teaching Physics

Vector Formalism in Introductory Physics III: Unwrapping Dot Products Geometrically

TL;DR: Vector dot products are not like products of real numbers, for which there is an inverse operation to “undo” multiplication. I don’t think we should introduce dot products as a form of “multiplication” in introductory physics courses because it may reinforce the urge to “divide by a vector.” A better approach may be to […]

Read More Vector Formalism in Introductory Physics III: Unwrapping Dot Products Geometrically

Vector Formalism in Introductory Physics II: Six Coordinate-Free Derivations of the BAC-CAB Identity

TL;DR: The BAC-CAB vector identity is probably the most important vector identity, and has potentially important applications in introductory physics. I present six coordinate-free derivations of this identity. By “coordinate-free” I mean a derivation that doesn’t rely on any particular coordinate system, and one that relies on the inherent geometric relationships among the vectors involved. […]

Read More Vector Formalism in Introductory Physics II: Six Coordinate-Free Derivations of the BAC-CAB Identity

Vector Formalism in Introductory Physics I: Taking the Magnitude of Both Sides

TL;DR: I don’t like the way vectors are presented in calculus-based and algebra-based introductory physics. I think a more formal approach is warranted. This post addresses the problem of taking the magnitude of both sides of simple vector equations. If you want the details, read on. This is the first post in a new series […]

Read More Vector Formalism in Introductory Physics I: Taking the Magnitude of Both Sides

Matter & Interactions II, Week 11

More with circuits, and this time capacitors, and the brilliantly simple description M&I provides for their behavior. In chapter 19, we see that traditional textbooks have misled students in a very serious way regarding the behavior of capacitors. Those “other” textbooks neglect fringe fields. Ultimately, and unfortunately, this means that capacitors should not work at […]

Read More Matter & Interactions II, Week 11

Matter & Interactions II, Week 10

Chpater 18. Circuits. You don’t need resistance. You don’t need Ohm’s law. All you need is the fact that charged particles respond to electric fields created by other charged particles. It’s just that simple. When I took my first electromagnetism course, I felt stupid becuase I never could just look at a circuit and tell […]

Read More Matter & Interactions II, Week 10